
SimEvo: Testing Evolving Multi-Process Software

Systems

Tingting Yu

Department of Computer Science

University of Kentucky, Lexington, KY 40506, USA

tyu@cs.uky.edu

Abstract—Regression testing is used to perform re-validation
of evolving software. However, most existing techniques for
regression testing focus exclusively on single-process applications,
but to date, no work has considered regression testing for
software involving multiple processes or event handlers (e.g.,
software signals) at the system-level. The unique characteristics
of concurrency control mechanism employed at the system-level
can affect the static and dynamic analysis techniques on which
existing regression testing approaches rely. Therefore, applying
these approaches can result in inadequately tested software
during maintenance, and ultimately impair software quality.
In this paper, we propose SimEvo, the first regression testing
techniques for multi-process applications. SimEvo employs novel
impact analysis techniques to identify system-level concurrent
events that are affected by the changes. It then reuses existing
test cases, as well as generating new test cases, focused on the set
of impacted events, to effectively and efficiently explore the newly
updated concurrent behaviors. Our empirical study on a set of
real-world Linux applications shows that SimEvo is more cost-
effective in achieving high inter-process coverage and revealing
real world system-level concurrency faults than other approaches.

I. INTRODUCTION

Regression testing is used to perform re-validation of

evolving software, to assess whether changes have adversely

affected system behavior, and whether new code behaves as

intended. Regression testing can be expensive when the size of

test suites grows as software evolves. However, The efficiency

of regression testing can be exacerbated by the changes in a

concurrent software system, because it can take much longer

execution time required to cover a reasonable amount of event

interleavings [47]. A common approach to reduce testing cost

is to test only the modified portion of code. When adapting

this approach to concurrent systems, it becomes that testing

all event interleavings that are affected by the code changes.

While there exists much research on rendering regression

testing more cost-effective, including regression test selection,

test case prioritization, and test suite augmentation [56], they

primarily focus on sequential programs. To the best of our

knowledge, only a few studies have considered reducing the

cost of regression testing for concurrent systems. Nevertheless,

these techniques focus on applications that are non-distributed,

and in which changes involve only single processes.

Modern software systems, though, are very different from

traditional systems because they can employ different concur-

rency control mechanisms to coordinate different system-level

events (e.g., processes, software signals, and interrupts). Nu-

merous classes of software systems that are increasingly popu-

lar today, such as embedded systems, web servers, distributed

systems, and cloud-based applications, have this characteristic.

A change can happen in a process or an event handler (e.g.,

signal handler, interrupt handler), which can affect not only

the sequential execution of a system module, but also a system

event and make it interleave in new ways with other events,

resulting in concurrency failures.

System-level concurrency failures usually occur when mul-

tiple processes access an operating system resource such as a

file or device without proper synchronization. Unlike an intra-

process (thread-level) concurrency bug that often corrupts only

volatile memory within a process, an inter-process (system-

level) concurrency bug is more dangerous, since it corrupts

the persistent storage and other system-wide resources, thus

potentially crashing the entire system. As Laadan et al. [26]

noted, more than 73% of the race conditions reported in

popular Linux distributions were process-level races.

System-level concurrency makes existing regression-testing

approaches less effective on today’s complex software systems

because they affect most of the change impact analysis on

which regression testing approaches rely. The characteristics of

multi-process programs make it difficult to construct program

models and perform impact analysis across various concurrent

events, because most existing techniques assume that the

analysis can be performed directly through either intra-thread

or inter-thread control and data flow of the software [1],

[24], [39], [45], [47], [58]. However, system-level event in-

terleavings often involve shared resources accessed through

system calls, which are typically treated as black boxes by

engineers who use them to develop applications. Existing

techniques cannot handle the implicit dependencies between

such concurrent events.

In this paper, we propose SimEvo, the first regression testing

framework for validating evolving multi-process software sys-

tems. SimEvo employs the Simics Virtualization Platform [14]

to observe system execution and to deterministically control

occurrences of system-level events. Figure 1 provides an

overview of SimEvo. SimEvo takes a multi-process program

S and its modified version S′ as inputs, where Pi and

P ′
i are processes. SimEvo first employs a lightweight and

conservative static analysis to identify system-level concurrent

events (i.e., system calls), SL, that can be accessed by multiple

2017 IEEE International Conference on Software Maintenance and Evolution

978-1-5386-0992-7/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSME.2017.29

204

S

S’

Output

Fig. 1: SimEvo architecture

processes in a modified program, and that are impacted by the

modifications (e.g., P ′
1 is modified).

Due to the imprecision of static impact analysis and that

certain events in SL may not be exercised by existing test

inputs, in the second step, SimEvo generates new test inputs T ′

for trying to cover every system call in SL in S′. Specifically,

SimEvo employs a genetic algorithm to compute new inputs,

and exercises them on the new program version S′ to increase

the coverage. However, prior to doing that, SimEvo utilizes

the existing test inputs T , together with a random inter-process

interleaving schedule of S′, to trim down the set of coverage

targets in SL. That is, new test inputs are generated only when

a coverage target cannot be reached by existing inputs.

Next, SimEvo exercises the inputs T ′′ that cover the im-

pacted events in SL, where T ′′ ⊆ T ∪ T ′ on S′. SimEvo

leverages the observability in the VM to gather runtime

information related to shared resource accesses (e.g., accessing

system-level resources through system calls) and process-level

synchronization operations (e.g., fork, wait). The runtime

information can be used to (1) compute concurrent events

that are truly impacted by the changes (i.e., eliminate false

positives in static analysis), denoted by SL∆ and (2) analyze

the system for potential sources of concurrency violations, i.e,

affected interleaving schedules (IS∆), where each interleaving

contains at least one impacted event.

Finally, SimEvo leverages the VM’s controllability to per-

mute process interleavings by causing the kernel scheduler

to explore the affected interleavings. Since the number of

interleavings could be enormous, SimEvo does not explore

interleavings exhaustively; instead, it guides the exploration

using a specific coverage criterion: the selected interleavings

must match a predefined set of inter-process Def-Use access

patterns.

To assess SimEvo, we have conducted an empirical study

during the regression testing of 13 unique multi-process Linux

applications containing real system-level concurrency faults.

We compared SimEvo to an existing testing tool for detecting

system-level concurrency faults, SimRacer. Our results show

that SimEvo was more effective than SimRacer in terms of

coverage and fault detection effectiveness; SimEvo detected

53.3% more faults, improved the coverage by 76.3%. With

the test case generation disabled, SimEvo reduced the cost by

66.7% over SimRacer, but was as effective as SimRacer. In

addition, we evaluated impact analysis components in SimEvo.

Our results suggest that, the static impact analysis can improve

the effectiveness of SimEvo compared to the traditional impact

analysis. While the dynamic impact analysis did not improve

the effectiveness, it improved the efficiency of SimEvo in

certain cases.

In summary, this paper makes the following contributes:

• We propose a new automated framework for regression

testing of multi-process software systems, which is capa-

ble of generating both new inputs and event interleavings,

to explore inter-process concurrent behaviors affected by

code changes.

• We conduct controlled experiments to evaluate both ef-

fectiveness (coverage and fault detection) and efficiency

(testing time) of SimEvo.

In the next section, we introduce the technical background

and problem statement using a motivating example. We then

present the detailed algorithms of SimEvo in Section III. Our

empirical study and results are presented Sections IV and V,

followed by a discussion of our observations in Section VI.

We present the related work in Section VII, and then give our

conclusions in Section VIII.

II. BACKGROUND

In this section, we use examples to illustrate the challenges

in regression testing of multi-process applications and then

formally define our problem.

A. A Motivating Example

Figure 2 shows a multi-process program, where P1 is a

parent process and P2 is a child process. The two processes

concurrently access a shared resource: a file f . In the original

program, P1 first creates a file f and spawns a child process

P2 using fork (line 3). P1 then waits for P2 to exit (line 5

and line 9). After P2 exits (line 19), if f is in symbolic format

(line 4), P1 unlinks f . If f is a socket file (line 8), P1 writes

a message into f (line 12).

In the modified program version, the first change involves

removing a waitpid system call (line 5). This change causes

a write-read race condition because the unlink (line 6) and

stat (line 16) are not synchronized, in which line 16 can

execute before line 6. The result is that P1 unlinks the file

and P2 finds that the file is missing (line 17). The second

change involves changing the name of the pid variable in the

waitpid system call (lines 9-11).

This example hints at the complications involved in evolving

this program. First, the causal relations among events and

shared resources invalidate the traditional impact analysis

techniques that rely on data and control flow of the programs.

205

1 P1 : /* parent */

2 f = open (file, "w");

3 pid = fork(); /* fork P2 */

4 if (ISLNK(f.mode)) {

5 waitpid(pid, &status, ...);

6 unlink(f);

7 }

8 if (ISSOCK(f.mode)) {

9 waitpid(pid, &status, ...);

10 +pid1 = pid;

11 +waitpid(pid1, &status, ...);

12 write(f, msg);

13 }

14

15 P2 : /* child */

16 if(stat(f) != 0)

17 ERROR;

18 ...

19 exit(0);

Fig. 2: A motivating example.

In Figure 2, removing the first waitpid system call (line 5)

can affect the execution order of unlink and read, even

though waitpid does not have an explicit data or control

dependency on the other two events. Therefore, existing se-

quential or multi-threaded regression testing techniques cannot

be adapted in this context because they do not consider the

causal relations of system-level events (e.g., system calls).

Change impact analysis (CIA) techniques that are specific to

system-level concurrency semantics are needed.

Second, static impact analysis is often inadequate [3]. A

study has shown that 90% of the events in the impact sets

derived by static CIA can be spurious [3]. In Figure 2, a

simple static analysis would conclude that all system calls

that access shared resources after line 5 and before line 19 are

impacted. However, the stat (line 16) and write (line 12)

are correctly synchronized – the pid passed to the waitpid

is not modified. On the other hand, dynamic analysis is precise

but not safe – it can miss affected entities not exercised by

existing test cases. To bridge this gap, we need to leverage the

advantages of both static and dynamic CIA techniques.

Third, exhaustive testing of all possible interleavings across

all test inputs are inefficient. In Figure 2, the retest-all tech-

niques would explore all event pairs: <(P1, open, 2), (P2,

stat, 16)>, <(P1, unlink, 6), (P2, stat, 16)>, and <(P1,

write, 12), (P2, stat, 16)>. However, only <(P1, unlink, 6),

(P2, stat, 16)> is affected by the change and needed to be

tested. To improve the efficiency of regression testing, new

interleavings should be selected without first exploring the

entire interleaving space.

B. Preliminaries

System-level concurrency faults. A system-level concurrency

fault occurs when multiple processes, signals, or interrupts ac-

cess a system-wide resource (e.g., file, device, or hardware reg-

ister) without proper synchronization [26]. Such resources are

often accessed through system calls. Thus, handling system-

level concurrency fault requires the modeling of read/write

effects and synchronization operations involving system calls.

Fig. 3: Example execution trace for P1 and P2.

For example, the lstat system call on file f reads the

metadata of f , and the write system call on f writes to both

the data and metadata of f . The clone system call creates

a new process inode under the /proc directory (write). The

wait system call changes the state of the pid of its child

process and removes the inode of its child process inode under

the /proc directory (write).

Synchronization operations are used to control event interac-

tions. We record all the common process-level synchronization

primitives such as fork, wait, exit, pipe, and signal.

In Linux, the scheduling of processes-level events is controlled

by the kernel process scheduler through these synchronization

primitives.

An execution trace is a sequence of events, where each

event is either a shared resource access or a synchronization

operation. The second column of Figure 3 shows an example

trace for running the modified program following an arbitrary

schedule (Column 1). Each event in the trace is either a shared

resource access (“R” denotes read and “W” denotes write) or

a synchronization operation. Details of shared resource and

event modeling can be found in prior work [26], [57].

Constraint modeling. Previous work has defined a constraint

model to facilitate system-level race detection [57]. This model

is constructed from an execution trace that captures the partial

order relations of events in the execution trace. The partial

order relations are inferred from the semantics of the system

calls. For any two events ei and ej , a partial order relation,

denoted ei → ej , holds when ei must happen before ej .

In such a case, we also say that ej causally depends on ei.
Specifically, the following partial order relations are defined.

• Program order: ei → ej when ei occurs before ej in

the same process/thread.

• Fork-return order: ei → ej when ei is the fork that

starts the process Pj , and ej is the corresponding return

of Pj .

• Wait-exit order: ei → ej when ei is the wait (or

waitpid) that blocks a parent process, and ej is the

exit that terminates the child process.

• Pipe-read order: ei → ej when ei is a stream write

to a pipe, and ej is the corresponding stream read. For

example, attempting to read an empty pipe will cause the

reading process to block until there is data available by

the writing process.

• Signal order: ei → ej when ei is an event from a process

that enables a software signal S, and ej is the entry of

S. This is because a signal handler cannot be executed

unless it is enabled by a process.

206

In the example of Figure 2, the open event (line 2) happens

before all events in P2 because of the fork-return partial

order. As such, open can never race with the stat (line

16) on accessing f . In the original (unmodified) program, the

unlink (line 6) and stat (line 16) are synchronized by the

wait-exit partial order.

III. SIMEVO APPROACH

Algorithm 1 shows the SimEvo algorithm. The algorithm

takes the source code of both original and modified systems

(S and S′) and a coverage criterion (PT) as inputs. The output

is a set of test cases, T∆, that can exercise the impacted code,

coverage C, and faults F . We next explain each step of the

algorithm. The details of the algorithm are described from

Section III-A to Section III-D.

SimEvo first employs static change impact analysis (CIA)

to identify a list of system calls (SL) that are potentially

impacted by the changes in S′ (line 1). In Figure 2, the

impacted system calls involving shared resource access are

unlink (line 6), write (line 12), and stat (line 16). The

open (line 2) is not included because it is synchronized by the

partial order relation. SimEvo then calls the ExeConcrete

to exercise existing test suites T on S′. The return of this

function is a list of system calls in SL covered by T . The

uncovered targets are denoted by TG (line 2).

Next, SimEvo generates input data (NT [i]) for each individ-

ual process under test (PuT) Pi in S′ to exercise its target list

TG[i] (line 4). This is accomplished by a customized Genetic

Algorithm (GA) on each PuT. The test generation process

repeats until all targets in SL are covered or a time limit is

reached. In Figure 2, suppose there exists only one test input

t1 = f.lnk. Therefore, a new test input t2 = f.sock (a

socket file) is generated to cover the write at line 12.

As new inputs NT are generated, SimEvo selects a subset

of tests T∆ from both T and NT that exercise at least one

changed or impacted element in SL (line 6). The rationale

is to reduce the cost of the subsequent schedule exploration

by discarding the irrelevant tests. Next, SimEvo executes each

selected test on both S and S′ following a random schedule

to obtain the execution traces E and E′, respectively (line 8).

Column 1 in Figure 3 illustrates the execution trace for the

modified program in Figure 2.

Next, SimEvo invokes the dynamic change impact analysis

routine (line 9) to identify inter-process concurrent events,

SL∆, that are truly impacted by comparing the synchro-

nization contexts of E and E′. It is possible that an access

is unaffected by the program modifications but there are

changes to its synchronization contexts (SC), characterized by

its partial order relations. In this example, unlink (line 6)

and stat (line 16) are truly impacted events but write (line

12) is not.

Finally, SimEvo employs predictive trace analysis (PTA) to

explore affected interleaving space (IS∆) with respect to SL∆

(line 10). Specifically, PTA computes affected interleavings in

alternative executions by re-shuffling the order of concurrent

access events to match problematic access patterns [28]. An

affected interleaving contains at least one impacted event.

SimEvo generates the interleavings off-line, so many of them

can be infeasible. As such, SimEvo replays these interleavings

using the inputs T∆ to validate their feasibility.

Algorithm 1 The Overall Algorithm of SimEvo.

Input: S, S′ PT
Output: T∆, C, F /*faults*/

1: SL ← StaticCIA(S, S′)
2: TG ← SL - ExeConcrete(T, S′)

3: for each Pi ∈ PuTs in S′ do
4: NT [i] ← GuidedGA(Pi, TG[i])
5: end for
6: T∆ ← SelectTests (T ∪NT)
7: for each t ∈ T∆ do
8: <E, E′> ← GetExeTrace(t, S, S′)
9: SL∆ ← DynamicCIA(E,E′)

10: IS∆ ← ScheduleGeneration(E′, SL∆, PT)
11: if Replay(T∆, IS∆) is sucessful then
12: update C and F
13: end if
14: end for

A. Static Analysis

The first step is to identify changes and statically compute

system entities (i.e., system calls on resource accesses) af-

fected by the suggested changes. The analysis in this step

is conservative and may overestimate the results (i.e., false

positives). However, the identified affected entities are used

to guide test input generation for which false positives can

be eliminated by the execution of tests. The static analysis

component in SimEvo takes as inputs all processes in S and

S′ and operates in two phases: 1) identifying changed elements

for each PuT in S′, and 1) computing system calls on accessing

shared resources that are affected by the changes in the PuTs

of S′.

In the first phase, SimEvo computes a change set, denoted

by ∆diff . To do this, it first uses a lightweight diff utility

to compute the set of changed statements. Since the results

reported by the diff tool may generate too many false positives

(e.g., changing a variable name from x to y would cause the

diff to report all lines that formerly referred to x as changed,

even if they are structurally the same), we build abstract syntax

trees (ASTs) for both S and S′ and compare them structurally,

in which we traverse in parallel to collect type and name

mappings. Two variables are considered equal if we encounter

them in the same syntactic position reported by the diff tool.

The ultimate changes are added to the change set C.

In the second step, for each changed instruction c ∈ ∆diff ,

SimEvo computes the system calls that are affected by c and

adds them into SL. To do this, SimEvo performs a forward

slicing on each changed PuT of S’ to identify all system

calls, I , that depend on c. As a result, all resource access

system calls in I ∪ c are added to SL because they may

affect the interleaving space of S′. In the example of Figure 4,

after modifying line 9, stat (line 11) is marked as impacted

because it can race with unlink (line 4) in P1.

207

1 P1 :

2 line = fgets(f);

3 if(strcmp(line, "hello") == 0)

4 unlink(f);

5 ...

6

7 P2 :

8 line = fgets(f);

9 if(strcmp(line, "hello") != 0)

10 if(strcmp(line, "hello") == 0)

11 if(stat(f) != 0)

12 ERROR;

13 ...

Fig. 4: The change can affect the interleaving space.

Next, for each synchronization operation s ∈ I ∪ c, SimEvo

computes all system calls that depend on s according to the

event constraint model described in Section II-B. A system

call (SC) is considered impacted in the following cases:

• If s is a fork-notify synchronization, all SCs that are

control dependent on the fork operation and all SCs

that can reach the return operation are marked as

impacted and added to SL.

• If s is a wait-exit synchronization, all SCs that are control

dependent on the wait operation and all SCs that can

reach the exit operation are marked as impacted and

added to SL.

• If s is a pipe read-write synchronization, all SCs that

are control dependent on the read operation and all

SCs that can reach the write operation are marked as

impacted and added to SL.

• If s is a signal enable operation, all SCs that are control

dependent on the enable operation and all SCs within

the signal handler are marked as impacted and added to

SL.

In the example shown in Figure 2, the removal of the two

waitpid system calls matches the second case. Therefore, all

SCs that are control dependent on the waitpids, including

unlink (line 6) and write (line 12), are impacted. Since

stat (line 16) can reach exit, it is also marked as impacted.

At this point, SimEvo does not distinguish shared resources

from other resources because thread escape analysis cannot

be used to identify system-wide shared resources. Instead, we

mitigate this challenge to the dynamic CIA phase.

B. Change-guided Test Input Generation

In this step, we employ a genetic algorithm (GA) to compute

data inputs of all processes under test (PuTs) in a modified

multi-process system S′ to cover the affected system calls

obtained from the static analysis. This step differs from prior

works on test data generation using genetic algorithms [34]

in that our method is designed for multi-process applications

whereas prior works all focus on a single process.

SimEvo’s genetic algorithm accepts three parameters: the

PuT Pi, the set of targets (i.e., impacted system calls) TG, a set

of existing test cases T , and a time limit titer. The algorithm

returns a set of new test inputs NTC.

Internally, we conduct a goal-directed exploration of the

PuTs, to traverse affected system calls. The algorithm begins

with an initial test data population (i.e., existing tests T). It

executes existing tests on each PuT, monitors the coverage,

evolves the population toward the remaining goals in TG, and

generates new tests. Like the conventional test data generation

using GAs [34], SimEvo first provides a representation of

the test problem in the form of a chromosome (encoded as

a bit string), and a fitness function that defines how well

a chromosome satisfies the intended goal. The algorithm

proceeds iteratively by evaluating all chromosomes in the

population and then selecting a subset of the fittest to mate.

These are combined in a crossover stage to generate a new

population of which a small percentage of chromosomes in

the new population are mutated to add diversity back into

the population. This concludes a single generation of the

algorithm. The process is repeated until a time limit is reached

or the solution has converged (i.e., all targets in TG are

covered).

1) Optimization: The main problem in automated test data

generation is to make the procedure practical efficient by ex-

ploring the more “interesting” (i.e., impacted) program paths.

Toward this end, we propose several optimization techniques.

First, we statically analyze the source code of each PuT to

prune away branches that do not lead to the targets. Second, we

seed existing concrete test data and generates new tests only

for the targets that are not covered by existing tests. Third,

given N PuTs (where N > 1), SimEvo may invoke the test

generation algorithms N times. To reduce the computational

cost, we heuristically seed the concrete input data generated

from one PuT Pi to another PuT Pj , if Pj accepts the same

type of input data (e.g., both mv and rm programs accept

files as inputs). In this case, rather than invoking test case

generation routine on Pj , we check if we can use the input

data t from Pi as the concrete input to Pj . If t allows Pj to

reach its target list, then no test case generation is needed.

Note that the data inputs generated from different PuTs may

have different names but need to point to the same shared

resources. For example, process P1 may generate an input file

called B.txt, whose name is different from A.txt generated

from process P2. In this case, the two file names must be

unified to expose the failure. SimEvo records a list of system

calls that access the data input for each PuT. If both lists in the

pair of PuTs are non-empty, the data input is a shared resource

between the PuTs and thus the file names are unified.

2) Fitness Function: We use path objective to compute

fitness values, which is defined as covering impacted system

calls. The objective is a minimization task, where the optimal

solution has a fitness value of zero. The fitness value can be

formulated as f = a+d/(d+1), where a is approach level and

d is the branch distance. The approach level is a count of the

number of predicate nodes in the shortest path from the first

predicate node in the flow graph to the predicate node with

the critical branch [6]. Resuming the example from Figure 2,

if the input takes the false branch at line 8, the approach level

for reaching the true branch is 1.

208

When a test case misses the target path section, the branch

distance measures the distance to the critical branch, where

the critical branch is the branch where control flow diverged

from reaching the target. In a code snippet if(intput >

10) ...; else..., if the input takes the else branch, the

branch distance would be |input−10|+k, where k is a failure

constant. We use k=1 in SimEvo. In Figure 2, the distance

is 1+k; we use 1 to handle the “integer-zero” branch [43]. If

a statement is executed multiple times, the branch distance d
is the minimum over all executions. The normalized branch

distance is defined as d/(d + 1). A path distance is the sum

of the branch distances along a test execution [5].

C. Dynamic Change Impact Analysis.

After new test inputs NT are generated, SimEvo selects

a set of tests, SL∆, from both NT and existing tests T
that are relevant to the impacted elements in SL. SimEvo

executes each test t in SL∆ on the PuTs of both S and S′

under arbitrary schedules to produce execution traces E and

E′. Next, SimEvo uses a dynamic CIA method to accurately

compute the impacted system-level concurrent events. The

insight is that eliminating false positives can reduce the size

of interleaving space needed for exploration. The output of

this step is an impact set containing resource access system

calls that could constitute new interleavings. Here, a new event

interleaving must contain at least one impacted concurrent

event.

We propose the notion of dynamic synchronization context

(DSC) for each shared resource access e in an execution trace

to describe how other concurrent events can interleave with

e. It is defined by the event partial order relations (defined in

Section II-B) between e and other shared resource accesses.

We can then compare the DSC of e between the old execution

E and the new execution E′, where a difference indicates an

impact.

To compare the DSCs of an access e across different

executions, we encode the partial order relation of e (i.e.,

PORe) as the ordered sequence of synchronization operations

when e is generated in the trace. Figure 5 illustrates the DSCs

for the events in the example of in Figure 2, under two test

inputs t1=f.lnk (a symbolic file) and t2=f.sock (a socket

file), following random schedules, and across two program

versions. The red fonts indicate the differences.

Given the input t1=f.lnk to both S and S′, the DSC for

the unlink (line 6) is {waitpid – exit} (a partial order

relation) in the original system S, but it becomes {exit}
only, after the {wait} is removed in S′. Thus, the unlink

is impacted by the change. On the other hand, when exercising

this program against t=f.socket the write (line 12) is not

truly impacted because the value of pid1 is equal to that of

pid. Therefore, only unlink is truly affected.

D. Affected Interleaving Space Exploration

The goal of this step is to explore the affected interleaving

space IS∆, where each interleaving involves at least one

impacted concurrent events. This reduces the regression testing

Fig. 5: Dynamic impact analysis for S and S’.

cost by limiting the search of interleavings. The inclusion of

impacted events is a necessary property of a new interleav-

ing [47]. For example, the race condition <(P1, unlink, 6),

(P2, stat, 16)> in Figure 2, can only be manifested in the

interleaving in which unink is impacted.

Nevertheless, exploring the entire delta of the interleaving

space is still challenging in terms of the efficiency of regres-

sion testing. This is because the number of new interleavings

could still grow exponentially with the execution length.

To address this problem, we leverage the coverage criteria

used in multi-threaded programs for covering representative

interleavings that are likely to expose concurrency failures. We

consider those interleavings that match Definition-Use pairs.

In our context, a definition is a system call write access and

use is system call read access. As a result, the number of

violations in the delta of the interleaving space is often small.

We propose a new process-level predictive dynamic analysis

method to generate new event interleaving schedules. SimEvo

takes the trace obtained from dynamic impact analysis E′ as

input, where E′ contains at least one impacted access event.

SimEvo then searches for every event pair that contains at least

one impacted event e′ and then systematically generate alter-

native interleavings for matching the given access pattern (i.e.,

inter-process Def-Use). Our method for generating alternative

interleavings relies on the partial order of events (Section II-B)

appeared in the initial execution trace.

One challenge is how to ensure that the new inverleaving

schedule is feasible. The basic idea of SimEvo is to permute

events in the current execution trace by repeatedly flipping the

order of a pair of events involving shared resource accesses

between two PuTs with respect to the partial order relations.

Here, an event pair contains a read access and a write access,

the read happens before write, and at least one event is

impacted. Toward this end, we first pick an event pair, then

generate the new interleaving schedule offline, and finally

replay the PuTs under the new interleaving schedule. The

rationale for using offline schedule generation, as opposed to

active randomized testing [41], [57], is that it can guarantee

to generate a feasible schedule to flip an event pair. The proof

is described in the recent work by Huang et al. [20].

In the example of Figure 2, the original trace covers an event

pair ep = <(P2, stat, 16), (P1, unlink, 6)>, as shown in

Column 1 of Figure 3. Since unlink is affected, SimEvo

permutes the order of this pair to make unlink happen before

stat for matching the Def-Use access pattern (i.e., Column 3

of Figure 3). When exercising the interleaving following this

order, a failure occurs.

209

TABLE I: Objects of Analysis and Their Characteristics

Prog. Pair Ver. NLOC Bug ID Output description Root cause description #SysC. #DUP. #Tests

mv tail
v1 6,733 (unlink, rename, . . . , stat�) 15

45
v2 7,002 Bugzilla-438076 another process terminates (“file is missing”) (unlink, . . . , stat�, rename) 17 22

rm myprog
v1 5,401 (openat, fstat, . . . , unlink�) 13

48
v2 5,525 Bugzilla-1211300 rm terminates (“directory not empty”) (openat, . . . , unlink�, fstat) 15 22

chmod myprog
v1 3,762 (stat, fchmodat, . . . , symlink�) 19

32
v2 3,983 GNU-11108 file permission mode is modified (stat, . . . , symlink�, fchmodat) 22 35

cp myprog
v1 4,051 (stat, mkdir, . . . , mkdir�) 32

36
v2 4,132 Changelog directory create fails (“directory exists”) (stat, . . . , mkdir�, mkdir) 35 49

ln myprog
v1 3,812 (stat, unlink, . . . , unlink�) 18

28
v2 3,890 Debian-357140 ln terminates (“file doesn’t exist”) (stat, . . . , unlink�, unlink) 18 28

mkdir myprog
v1 4,033 (mkdir, chmod, . . . , symlink�) 21

23
v2 4,213 Debian-304556 file permission mode is modified (mkdir, . . . , symlink�, chmod) 23 35

tail1 myprog
v1 4,245 (write, . . . , read�, exit) 25

30
v2 4,492 Changelog output not updated after attached process exits (read�, write, . . . , exit) 29 44

tail2 signal
v1 4,288 (read, stat, . . . , write�) 25

30
v2 4,317 Changelog incorrect output lines after a delivery of signal (read, . . . , write�, stat) 27 39

sort raceprog
v1 3,716 (read, unlink, . . . , unlink�) 33

38
v2 3,862 Changelog program terminates (“unlink failed”) (read, . . . , unlink�, unlink) 35 49

strace1 raceprog
v1 24,238 (stat, write�, fork) 42

49
v2 25,192 Bugzilla-558471 the process been tracked is not detatched (fork, stat�, write) 48 67

strace2 signal
v1 24,238 (wait�, execve) 42

49
v2 25,192 Bugzilla-548363 hang (execve, wait�) 48 67

bzip2 myprog
v1 8,706 (close, chmod, . . . , write�) 22

26
v2 9,263 Debian-303300 file permission mode is modified (close, . . . , write�, chmod) 22 31

bash bash
v1 37,698 (write, . . . , write) 42

30
v2 39,102 Debian-283702 corrupted history file (. . . , write, write�) 48 76

tcsh tcsh
v1 45,033 (write, . . . , write) 52

45
v2 47,167 Debian-632892 corrupted history file (. . . , write, write�) 59 81

apache signal
v1 194,198 (signal�, sigpromask) 102

66
v2 195,005 Apache-43696 server shutdown command is ignored (sigpromask, signal�) 114 172

IV. EMPIRICAL STUDY

We have implemented SimEvo in a software tool built upon

a number of open-source and commercial tools. Specifically,

our static CIA was implemented using a commercial tool

CodeSurfer [17], our guided GA was implemented using C++,

and our dynamic CIA and interleaving schedule exploration

was implemented based on SimRacer [57], a process-level

testing tool built on top of the Simics Virtual Platform [14].

To assess SimEvo we explore two research questions.

RQ1: How effective and efficient is SimEvo at achieving

coverage and to detect regression faults of S′?

RQ2: To what extent do the choices of using the analysis

techniques in SimEvo affect its effectiveness and efficiency?

A. Objects of Analysis

We chose 13 unique open source C/C++ objects, which

are representative of real-world code and have been widely

used in academic research. They are identified by searches of

reputable open-source repositories such as GNU, Bugzilla, and

Debian. We utilized two versions of each subject. Each mod-

ified version contains a concurrency fault due to incorrectly

shared resources between processes and/or signal handlers.

The programs and their characteristics are listed in Table I.

A system-level fault involves more than one processes, so

the subject contains a basic program and at least one other

process or signal handler. In this study, we consider two

processes in a subject, but SimEvo can handle more than

two processes in a pairwise fashion. To select the second

programs to pair with the basic programs, we again consulted

the bug repositories for the basic programs, and where pos-

sible, selected as paired programs those programs indicated

as having led to the faults previously identified when running

concurrently with the basic programs. Column 2 of Table I lists

the paired programs and signal handlers. We ultimately used

15 subject pairs because tail and strace can be paired

with both processes and signal handlers.

In several cases, bug reports did not specify problematic

paired programs. However, exposing races requires two pro-

grams, so in these cases we needed to create a second program.

To achieve this, we asked an unbiased person who had no

knowledge of our purposes to create a program, RACEPROG,

that can be paired with multiple basic programs. This program

accepts shared resources as inputs, and uses various operations

to manipulate the shared resources accessed by the basic

programs. For example, on one test for MV, “mv file1

file2”, that operates on two shared resources file1 and

file2, RACEPROG uses system calls (e.g., open, stat,

access) to access file1 or file2 or both.

Columns 3-6 list the program versions, the numbers of lines

of non-comment code, bug IDs, and the short descriptions

of the bugs. Column 7 shows the root cause of the failure,

whereas system calls marked with � are from other processes.

The events for the version “v1” indicate the intended order,

whereas the events for the version “v2” indicate the order

of the events is incorrect. For example, in mv (with bug

ID 438076), the buggy process causes another process to

terminate early due to a missing file when the atomicity of

unlink and rename is broken by the write operation of

another process. Columns 8-9 lists the total number of system

calls in the PuTs of both S and S′ and the total number of

inter-process Def-Use pairs in S′.

To address our research questions we also required tests. We

created black-box test suites relevant to the objects. Engineers

often use such test suites designed based on system param-

eters and knowledge of functionality [10]. We followed this

210

approach, using the category-partition method [33], which em-

ploys a Test Specification Language (TSL) to encode choices

of parameters and environmental conditions that affect system

operations and combine them into test inputs. Column 10 of

Table I lists the numbers of tests ultimately utilized for each

object program pair. Other columns are described later.

Testing also requires test oracles. For programs released

with existing test suites and with built-in oracles provided,

we used those. Otherwise we checked program outputs, in-

cluding messages printed on the console and files generated

and written by the programs. The oracles were obtained by

running the two processes under test sequentially, which did

not involve any interleavings. It is possible, however, that the

messages printed on the console and the written files might

change between interleavings without being associated to any

error. While we did not observe such cases in our subject

problems, we will leave this problem for future work.

B. Setting GA Parameters

We required an implementation of GA appropriate for

SimEvo. As GA parameters, we chose the number of test

cases N as an initial population size, and N /2 as the pop-

ulation size. Each chromosome is a test case. For selection,

we configured the algorithm to select the best half of the

population from which to generate the next generation; the

selected chromosomes are retained in the new generation. The

chromosomes are ranked, and evens and odds are paired, to

generate offspring. We configured the algorithm to perform a

one-point crossover by randomly selecting a division point in

the chromosome. Smith et al. [44] conclude that mutation rates

considering both the length of chromosomes and population

size perform significantly better than those that do not. Thus,

we utilize a mutation rate of 1.75

λ
√
l

as suggested by Haupt et

al. [18], where λ is the population size and l is the length of

chromosome. Our stopping criteria is either the full coverage

of the impacted system calls, or a time limit is reached. We

set the time limit to 24 hours.

C. Variables and Measures

1) Independent Variable: Our independent variable in-

volves the techniques used in our study. To answer RQ1,

we compare SimEvo to SimRacer, a system-level concurrency

fault detection tool. SimRacer relies on active testing [41],

[57], which first identifies anomalous event pairs and then

randomly explores interleaving schedules. SimRacer focuses

on single program versions and does not have the capability

of performing change impact analysis or generating new data

inputs, so we had to feed existing inputs to SimRacer.

We next consider SimEvog – a variant of SimEvo that

does not employ the GA to generate test cases. We compare

SimEvog to SimRacer to assess whether our approach can

reduce the interleaving space while retaining the coverage and

fault detection effectiveness.

To answer RQ2, we first evaluate whether the use of test

case generation and the CIA techniques are useful. We first

compare SimEvo to SimEvog . Next, we replace the SimEvo’

static CIA with the traditional CIA for single process appli-

cations, denoted by SimEvos. We then compare SimEvo to

SimEvos. Finally, we disable the dynamic CIA component,

denoted by SimEvod. We compare SimEvo to SimEvod.

2) Dependent Variables: As dependent variables, we chose

metrics allowing us to answer each of our two research

questions. To measure effectiveness, calculated the coverage

percentage. We then examined the number of system-level

concurrency faults detected by the techniques.

To measure the efficiency of our techniques, we measured

testing time by adding relevant measures, including the time

required for impact analyses (if any), the time required for

running the GAs (if any) and the time required to generate

the schedules and replay the programs.

3) Study Operation: To implement the testing process of

SimEvo, we ran both basic and paired programs simulta-

neously with each test case, and for pairs involving signal

handlers raised signals at arbitrary locations in the basic

program. All techniques we study involve randomization. To

control for variance due to randomization we ran each of the

techniques five times and compute the average values.

V. RESULTS

Table II reports the results produced in each phase of

SimEvo. In the static change impact analysis phase (Columns

2-3), it reports the percentage of system calls that are im-

pacted, and the time required for the analysis. In the test

case generation phase (Columns 4-5), it reports the number

of unique tests ultimately selected for regression testing and

the time required for test generation and selection. The “>”

indicates SimEvo reached the 24-hour time limit. Columns 6-7

report the percentage of impacted system calls after running

the dynamic change impact analysis, as well as the analysis

time. The ↓ indicates some impacted system calls identified in

static analysis were eliminated.

Columns 8-9 display the average coverage values of the

affected Def-Use pairs and the results of fault detection (“Y”

means the fault is detected and “No” means the fault is not

detected) in SimEvo. As the data shows, the coverage achieved

by SimEvo ranged from 58.5% to 100% across all objects. On

twelve objects, SimEvo achieved 100% coverage. Moreover,

on all 15 subject programs, SimEvo successfully detected the

faults. Columns 10 displays the time required for schedule

generation and replay. Column 11 reports the total time taken

by SimEvo across all analysis phases.

Table III reports the coverage, the number of faults de-

tected, and cost values obtained per program, across the four

baseline techniques. ↓ indicates the value is smaller than the

corresponding value in SimEvo, whereas ↑ indicates the value

is larger than the corresponding value in SimEvo. We now

present and analyze our data with respect to our two research

questions, in turn.

A. RQ1: Effectiveness and Efficiency of SimEvo

1) Coverage of Affected Def-Use Pairs: Columns 2-3 of

Table III displays the average coverage values of the affected

211

TABLE II: Experimental Results of SimEvo

Prog. Static CIA GA Dynamic CIA Schedule Generation Total Time

Impact (%) Time (min) Tests (#) Time (min) Impact (%) Time (min) Coverage (%) Faults (#) Time (min)

mv 3.3 0.2 22 11 3.3 4.5 100 Y 3.2 18.9

rm 5.6 0.2 29 8 5.6 5.8 100 Y 3.8 17.8

chmod 2.9 0.1 0 0 2.9 3.4 100 Y 4.1 7.6

cp 8.3 0.2 23 9 6.1 ↓ 5.5 100 Y 4.6 19.3

ln 5.4 0.3 21 7 3.4 ↓ 4.7 100 Y 4.1 16.1

mkdir 2.5 0.2 23 7 2.5 4.2 100 Y 3.6 15.0

tail1 7.8 0.2 18 12 7.8 2.9 100 Y 5.2 20.3

tail2 5.1 0.2 0 0 5.1 2.1 100 Y 5.4 7.7

sort 7.5 0.2 0 0 3.2 ↓ 2.5 100 Y 5.8 8.5

strace1 3.5 0.3 0 0 2.0 ↓ 2.8 100 Y 6.1 9.4

strace2 4.1 0.3 14 15 2.2 ↓ 6.4 100 Y 6.7 28.4

bzip2 3.5 0.2 0 0 3.5 2.5 100 Y 5.4 8.1

bash 19.4 0.3 28 > 9.6 ↓ 7.2 82.7 Y 5.9 >

tcsh 22.8 0.4 15 > 15.8 ↓ 6.9 79.4 Y 7.2 >

apache 28.5 0.6 39 > 14.9 ↓ 9.8 58.5 Y 8.1 >

TABLE III: Experimental Results of the Other Techniques

Prog. Coverage (%) Faults (#) Time (min)

SimRacer SimEvog SimEvos SimEvod SimRacer SimEvog SimEvos SimEvod SimRacer SimEvog SimEvos SimEvod
mv 50 ↓ 50 ↓ 100 100 N N Y Y 13.6 ↓ 7.9 ↓ 18.8 ↓ 18.9

rm 66 ↓ 66 ↓ 100 100 N N Y Y 19.6 ↑ 9.8 ↓ 17.8 17.8

chmod 100 100 100 100 Y Y Y Y 2.9 ↓ 7.6 7.5 ↓ 7.6

cp 78 ↓ 78 ↓ 100 100 Y Y Y Y 15.5 ↓ 10.3 ↓ 19.2 ↓ 20.9 ↑

ln 62 ↓ 62 ↓ 100 100 N N Y Y 18.4 ↑ 9.1 ↓ 16.1 18.2 ↑

mkdir 55 ↓ 55 ↓ 100 100 Y Y Y Y 12.2 ↓ 8.0 ↓ 15.0 15.0

tail1 54 ↓ 54 ↓ 82↓ 100 N N N Y 25.2 ↑ 8.3 ↓ 20.2 ↓ 20.3

tail2 100 100 100 100 Y Y Y Y 12.4 ↑ 7.7 7.7 7.7

sort 100 100 90↓ 100 Y Y N Y 14.4 ↑ 8.5 8.4 ↓ 10.0 ↑

strace1 100 100 100 100 Y Y Y Y 19.6 ↑ 9.4 9.4 10.4 ↑

strace2 48 ↓ 48 ↓ 100 100 N N Y Y 17.8 ↓ 13.4 ↓ 28.3 ↓ 31.3 ↑

bzip2 100 100 100 100 Y Y Y Y 12.3 ↑ 8.1 8.1 8.1

bash 41 ↓ 41 ↓ 74.2 ↓ 82.7 N N Y Y 36.5 ↓ 2.2 ↓ > >

tcsh 49 ↓ 49 ↓ 60.5 ↓ 79.4 N N N Y 32.3 ↓ 1.5 ↓ > >

apache 43 ↓ 43 ↓ 52.8 ↓ 58.5 N N Y Y 41.6 ↓ 3.3 ↓ > >

Def-Use pairs for SimRacer and SimEvog (i.e., GA is dis-

abled). When comparing SimEvo to SimRacer, on ten out the

15 objects, SimEvo was more effective than SimRacer. The

improvement ranged from 22% to 108.3%. On the other five

objects, the two techniques achieved the same coverage.

When comparing SimEvog to SimRacer, they were equally

effective on all 15 objects. This is because the affected

Def-Use pairs were exercised by only existing test inputs.

Nevertheless, the efficiency of the two techniques did show

differences (described later).

2) Regression Fault Detection: Columns 6-7 of Table III

display the results of fault detection for SimRacer and

SimEvog . As the data shows, SimRacer detected only seven

faults – 53.3% less effective than SimEvo. SimEvog detected

the equal number of faults as SimRacer.

3) Efficiency: Columns 10-11 of Table III report the costs

involved in SimRacer and SimEvog . On eight out of 15

objects, SimRacer required less time than SimEvo due to the

cost incurred by the test input generation in SimEvo. On

the other seven objects, however, SimRacer cost more than

SimEvo because the time taken to exercise all unaffected Def-

Use pairs in SimRacer exceeded the time needed for the input

generation in SimEvo.

When comparing to SimEvog , SimRacer consistently re-

quired more time than SimEvog because SimRacer explored

the entire interleaving space.

Overall, these results indicate that SimEvo was more effec-

tive than SimRacer in terms of coverage and fault detection.

While SimEvo was less efficient than SimRacer in some cases,

such costs are acceptable for in-house testing. Meanwhile,

when disabling the test input generation, SimEvo was consis-

tently more efficient than SimRacer while achieving the same

coverage and detecting the same number of faults as SimRacer.

If these results generalize to other real objects and re-

gression testing techniques, then if engineers wish to target

system-level concurrency faults, SimEvo is the best technique

to utilize.

B. RQ2: The Role of different analysis techniques in SimEvo

1) Coverage of Affected Def-Use Pairs: When disabling

the test case generation (i.e., SimEvog), the coverage was

reduced on ten out of the 15 objects by amounts ranging

from 22% to 108.3%. When using traditional impact analysis

(i.e., SimEvos), the coverage was reduced on five objects, by

amounts ranging from 10.8% to 31.2%. When the dynamic

impact analysis is disabled (i.e., SimEvod), it did not affect

the effectiveness of coverage.

2) Regression Fault Detection: SimEvog detected only

seven faults, comparing to the 15 faults detected by SimEvo.

SimEvos detected 12 faults. Three faults were not detected

212

because the impacted system calls were not identified by

the traditional impact analysis. SimEvod detected the equal

number of faults as SimEvo.

3) Efficiency: Where efficiency is concerned, SimEvog cost

less on ten out of 15 objects. SimEvos was only slightly more

efficient than SimEvo on six objects. SimEvod required more

time than SimEvo on five out 15 objects because it explored

additional system calls reported by the static CIA that could

have been eliminated by the dynamic CIA.

Overall, these results indicate that the use of the GA, the

use of static CIA, and the use of dynamic CIA, contributed

to enhancing the effectiveness or the efficiency of SimEvo.

The static CIA and GA improved the effectiveness, and the

dynamic CIA improved the efficiency.

VI. DISCUSSION

Application of SimEvo. SimEvo is only cost-effective when

the code modification affects a subset of the entire program:

if the entire program is modified then the incremental anal-

ysis degenerates to the non-incremental one. Therefore, our

technique is suitable in a software development environment

where frequent but small code changes are checked before

they are committed to the central repository. In our exper-

iments, the 13 multi-process applications are all developer-

made modifications typically affected around 2.5% to 15.8%

of the entire program. Such code changes are small enough

to allow SimEvo to be effective and efficient, although it

remains an open question whether they reflect the majority

of the software development scenarios in practice.

Interleaving coverage criteria. Interleaving coverage criteria

may impact how well SimEvo works. Lu et. all [28] introduced

seven interleaving coverage criteria, which are designed based

on different concurrency fault models. Their cost ranges from

exponential to linear. Study by Hong et al. [19] further

confirmed that effectiveness of concurrency fault detection can

vary across different criteria. While SimEvo employs Def-

Use criteria by default, it is important to investigate cost-

effectiveness of regression testing when using other interleav-

ing criteria in the context of regression testing.

VII. RELATED WORK

There has been a great deal of work on analyzing the

correctness of multi-threaded programs, e.g., through detecting

data races [7], [13], [23], [29] or atomicity violations [4],

[15], [42], [53], [55], schedule exploration [8], [12], [30], [40],

[41], [51], test generation [32], [37], and static analysis [16],

[22], [31], [52], [54]. However, these techniques focus on only

multi-threaded programs while ignoring concurrency faults

that occur at the system level. In addition, they do not consider

software evolution.

There has been work on detecting system-level concurrency

faults, such as the time of check to time of use (TOCTTOU)

bugs [35], [50], signal races [46], and race conditions [26],

[27], [57]. For example, RACEPRO [26] leverages the vector-

clock algorithm to detect process-level races, and can be used

in a custom Linux kernel that has been modified to provide

event recording and replay capabilities. These technique focus,

however, on single version programs and do not consider code

changes.

Little research targets regression testing for concurrent soft-

ware systems. Yu et al. presented the first test case selection

and prioritization framework, SimRT [58], specific for multi-

threaded programs for detecing data races. However, this

technique does not reduce the interleaving exploration cost of

selected or prioritized test cases. ReConTest [47] addresses

this problem by selecting the new interleavings that arise

due to code changes. However, the set of techniques used

for regression testing of multi-threaded programs cannot be

adapted to test for system-level concurrency faults. In ad-

dition, existing approaches may miss accesses not exercised

by existing test inputs. In contrast, SimEvo can generate new

test inputs to explore additionally impacted interleaving space

across multiple processes or signal handlers.

There have been several techniques on change impact anal-

ysis with a particular focus on multi-threaded programs [11],

[21], [25], [38], [47], [58], but they assume that changes

affect system entities within single process, neglecting the

interleaving of the order of events across the whole system.

There has been some work on impact analysis for distributed

systems [2], [9], [36], [48], [49], but it is limited to the

message passing primitives between software components.

Moreover, these techniques target only application-level func-

tion calls, neglecting fine-grained events (e.g., system calls),

whose execution order can affect the system’s behavior. Thus,

it cannot be used for exploring affected interleaving space at

the system level. In addition, these techniques do not address

the problem of reducing the cost or improving the effectiveness

of regression testing. In contrast, our research first performs

change impact analysis across multiple processes in the pres-

ence of event constraints and then utilizes the results of the

analysis to test the affected event interleaving space.

VIII. CONCLUSION

We have presented an automated regression test testing

framework, SimEvo, for use in detecting system-level con-

currency faults that are induced due to code changes in

multi-process systems. SimEvo treats test input generation and

interleaving exploration uniformly, in which new test inputs

are generated from test reuse to direct exploration of affected

interleaving space that has not been covered by existing inputs.

SimEvo is a configurable framework that allows engineers to

flexibly manage its modules and parameters. For example, one

can disable the test case generation to actively explore thread

interleavings within existing inputs. Also, one can disable im-

pact analysis and let SimEvo generate inputs and interleavings

for the whole program. We have evaluated SimEvo on a few

widely-used Linux applications and showed that it is cost-

effective.

ACKNOWLEDGMENTS

This work was supported in part by NSF grants CCF-

1464032 and CCF-1652149.

213

REFERENCES

[1] Mithun Acharya and Brian Robinson. Practical change impact analysis
based on static program slicing for industrial software systems. In
Proceedings of the International Conference on Software Engineering,
pages 746–755, 2011.

[2] Khubaib Amjad Alam, Rodina Ahmad, Adnan Akhunzada, Mohd
Hairul Nizam Md Nasir, and Samee U Khan. Impact analysis and
change propagation in service-oriented enterprises: A systematic
review. Information Systems, 54:43–73, 2015.

[3] Taweesup Apiwattanapong, Alessandro Orso, and Mary Jean Harrold.
Efficient and precise dynamic impact analysis using execute-after
sequences. In Proceedings of the International Conference on Software

Engineering, pages 432–441, 2005.
[4] Cyrille Artho, Klaus Havelund, and Armin Biere. High-level data

races. Journal of Software Testing, Verification, and Reliability,
13:207–227, 2003.

[5] Arthur Baars, Mark Harman, Youssef Hassoun, Kiran Lakhotia, Phil
McMinn, Paolo Tonella, and Tanja Vos. Symbolic search-based
testing. In Proceedings of the 2011 26th IEEE/ACM International

Conference on Automated Software Engineering, pages 53–62, 2011.
[6] André Baresel, Harmen Sthamer, and Michael Schmidt. Fitness

function design to improve evolutionary structural testing. In
Proceedings of the 4th Annual Conference on Genetic and

Evolutionary Computation, pages 1329–1336, 2002.
[7] Michael D. Bond, Katherine E. Coons, and Kathryn S. McKinley.

PACER: proportional detection of data races. In Proceedings of the

ACM SIGPLAN Conference on Programming Language Design and

Implementation, pages 255–268, 2010.
[8] Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and

Santosh Nagarakatte. A randomized scheduler with probabilistic
guarantees of finding bugs. In Proceedings of the International

Conference on Architectural Support for Programming Languages and

Operating Systems, pages 167–178, 2010.
[9] Haipeng Cai and Douglas Thain. DISTEA: efficient dynamic impact

analysis for distributed systems. Computing Research Repository,
abs/1604.04638, 2016.

[10] Adnan. Causevic, Daniel. Sundmark, and Sasikumar. Punnekkat. An
industrial survey on contemporary aspects of software testing. In
Proceedings of the International Conference on Software Testing,

Verification and Validation, pages 393–401, 2010.
[11] Krishnendu Chatterjee, Luca De Alfaro, Vishwanath Raman, and César

Sánchez. Analyzing the impact of change in multi-threaded programs.
In International Conference on Fundamental Approaches to Software

Engineering, pages 293–307, 2010.
[12] Katherine E. Coons, Sebastian Burckhardt, and Madanlal Musuvathi.

GAMBIT: effective unit testing for concurrency libraries. In
Proceedings of the ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, pages 15–24, 2010.
[13] Laura Effinger-Dean, Brandon Lucia, Luis Ceze, Dan Grossman, and

Hans-J. Boehm. Ifrit: Interference-free regions for dynamic data-race
detection. In OOPSLA, pages 467–484, 2012.

[14] Jakob Engblom, Daniel Aarno, and Bengt Werner. Full-System

Simulation from Embedded to High-Performance Systems. 2010.
[15] Cormac Flanagan and Stephen N. Freund. Atomizer: a dynamic

atomicity checker for multithreaded programs. pages 256–267, 2004.
[16] Cormac Flanagan and Shaz Qadeer. A type and effect system for

atomicity. In Proceedings of the ACM SIGPLAN Conference on

Programming Language Design and Implementation, pages 338–349,
2003.

[17] GrammaTech. CodeSurfer. Web page.
http://www.grammatech.com/products/codesurfer/overview.html.

[18] R. L. Haupt and S. E. Haupt. Practical Genetic Algorithms. John
Wiley, 1998.

[19] Shin Hong, Matt Staats, Jaemin Ahn, Moonzoo Kim, and Gregg
Rothermel. Are Concurrency Coverage Metrics Effective for Testing:
A Comprehensive Empirical Investigation. Journal of Software Testing,

Verification, and Reliability, 25(4):334–370, 2015.
[20] Jeff Huang and Charles Zhang. Persuasive prediction of concurrency

access anomalies. In Proceedings of the International Symposium on

Software Testing and Analysis, pages 144–154, 2011.
[21] Vilas Jagannath, Qingzhou Luo, and Darko Marinov. Change-aware

preemption prioritization. In Proceedings of the 2011 International

Symposium on Software Testing and Analysis, pages 133–143, 2011.

[22] Saurabh Joshi, Shuvendu K. Lahiri, and Akash Lal. Underspecified
harnesses and interleaved bugs. pages 19–30, 2012.

[23] Vineet Kahlon, Nishant Sinha, Erik Kruus, and Yun Zhang. Static data
race detection for concurrent programs with asynchronous calls. In
Proceedings of the ACM SIGSOFT Symposium on Foundations of

Software Engineering, pages 13–22, 2009.

[24] Miryung Kim and David Notkin. Program element matching for
multi-version program analyses. In Proceedings of the International

Workshop on Mining Software Repositories, pages 58–64, 2006.

[25] Jens Krinke. Advanced slicing of sequential and concurrent programs.
In IEEE International Conference on Software Maintenance, pages
464–468, 2004.

[26] Oren Laadan, Nicolas Viennot, Chia-Che Tsai, Chris Blinn, Junfeng
Yang, and Jason Nieh. Pervasive detection of process races in
deployed systems. In Proceedings of the ACM Symposium on

Operating Systems Principles, pages 353–367, 2011.

[27] Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi Joshi, Jeffrey F.
Lukman, and Haryadi S. Gunawi. Samc: Semantic-aware model
checking for fast discovery of deep bugs in cloud systems. In
Proceedings of the USENIX Conference on Operating Systems Design

and Implementation, pages 399–414, 2014.

[28] Shan Lu, Weihang Jiang, and Yuanyuan Zhou. A Study of Interleaving
Coverage Criteria. In FSE companion, pages 533–536, 2007.

[29] Daniel Marino, Madanlal Musuvathi, and Satish Narayanasamy.
LiteRace: effective sampling for lightweight data-race detection. In
Proceedings of the ACM SIGPLAN Conference on Programming

Language Design and Implementation, pages 134–143, 2009.

[30] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gérard Basler,
Piramanayagam Arumuga Nainar, and Iulian Neamtiu. Finding and
reproducing Heisenbugs in concurrent programs. In Proceedings of the

USENIX Conference on Operating Systems Design and

Implementation, pages 267–280, 2008.

[31] Mayur Naik, Chang-Seo Park, Koushik Sen, and David Gay. Effective
static deadlock detection. In Proceedings of the International

Conference on Software Engineering, pages 386–396, 2009.

[32] Adrian Nistor, Qingzhou Luo, Michael Pradel, Thomas R. Gross, and
Darko Marinov. Ballerina: Automatic generation and clustering of
efficient random unit tests for multithreaded code. In Proceedings of

the International Conference on Software Engineering, pages 727–737,
2012.

[33] Thomas. J. Ostrand and Mark. J. Balcer. The category-partition
method for specifying and generating fuctional tests. Commun. ACM,
pages 676–686, 1988.

[34] Roy P Pargas, Mary Jean Harrold, and Robert R Peck. Test-data
generation using genetic algorithms. Software Testing Verification and

Reliability, 9(4):263–282, 1999.

[35] Mathias Payer and Thomas R. Gross. Protecting applications against
TOCTTOU races by user-space caching of file metadata. In
Proceedings of the International Conference on Virtual Execution

Environments, pages 215–226, 2012.

[36] Daniel Popescu, Joshua Garcia, Kevin Bierhoff, and Nenad
Medvidovic. Impact analysis for distributed event-based systems. In
Proceedings of the ACM International Conference on Distributed

Event-Based Systems, pages 241–251, 2012.

[37] Michael Pradel and Thomas R. Gross. Fully automatic and precise
detection of thread safety violations. In Proceedings of the ACM

SIGPLAN Conference on Programming Language Design and

Implementation, pages 521–530, 2012.

[38] Venkatesh Prasad Ranganath and John Hatcliff. Slicing concurrent java
programs using indus and kaveri. International Journal on Software

Tools for Technology Transfer, 9:489–504, 2007.

[39] Neha Rungta, Suzette Person, and Joshua Branchaud. A change
impact analysis to characterize evolving program behaviors. In IEEE

International Conference on on Software Maintenance, pages 109–118,
2012.

[40] Koushik Sen. Effective random testing of concurrent programs. In
Proceedings of International Conference on Automated Software

Engineering, pages 323–332, 2007.

[41] Koushik Sen. Race directed random testing of concurrent programs. In
Proceedings of the ACM SIGPLAN Conference on Programming

Language Design and Implementation, pages 11–21, 2008.

214

[42] Ohad Shacham, Nathan Bronson, Alex Aiken, Mooly Sagiv, Martin
Vechev, and Eran Yahav. Testing atomicity of composed concurrent
operations. In Proceedings of the ACM SIGPLAN International

Conference on Object Oriented Programming Systems Languages and

Applications, pages 51–64, 2011.
[43] Sina Shamshiri, José Miguel Rojas, Gordon Fraser, and Phil McMinn.

Random or genetic algorithm search for object-oriented test suite
generation? In Proceedings of the Annual Conference on Genetic and

Evolutionary Computation, pages 1367–1374, 2015.
[44] Jim Smith and Terence C. Fogarty. Adaptively parameterised

evolutionary systems: Self-adaptive recombination and mutation in a
genetic algorithm. In Proceedings of the International Conference on

Parallel Problem Solving from Nature, pages 441–450, 1996.
[45] Tor Stålhane, Geir Kjetil Hanssen, Thor Myklebust, and Børge

Haugset. Agile change impact analysis of safety critical software. In
International Conference on Computer Safety, Reliability, and Security,
pages 444–454, 2014.

[46] Takamitsu Tahara, Katsuhiko Gondow, and Seiya Ohsuga.
DRACULA: Detector of data races in signals handlers. In Proceedings

of the Asia-Pacific Software Engineering Conference, 2008.
[47] Valerio Terragni, Shing-Chi Cheung, and Charles Zhang. Recontest:

Effective regression testing of concurrent programs. In IEEE

International Conference on Software Engineering, volume 1, pages
246–256, 2015.

[48] Simon Tragatschnig, Huy Tran, and Uwe Zdun. Impact analysis for
event-based systems using change patterns. In Proceedings of the

Annual ACM Symposium on Applied Computing, pages 763–768, 2014.
[49] Simon Tragatschnig and Uwe Zdun. Modeling change patterns for

impact and conflict analysis in event-driven architectures. In IEEE

International Conference on Enabling Technologies: Infrastructure for

Collaborative Enterprises, pages 44–46, 2015.
[50] Dan Tsafrir, Tomer Hertz, David Wagner, and Dilma Da Silva.

Portably solving file TOCTTOU races with hardness amplification. In
Proceedings of the USENIX Conference on File Storage Technologies,
2008.

[51] Willem Visser, Klaus Havelund, Guillaume P. Brat, Seungjoon Park,
and Flavio Lerda. Model checking programs. Autom. Software. Eng.,
10(2):203–232, 2003.

[52] Christoph von Praun and Thomas R. Gross. Static conflict analysis for
multi-threaded object-oriented programs. In Proceedings of the ACM

SIGPLAN Conference on Programming Language Design and

Implementation, pages 115–128, 2003.
[53] Liqiang Wang and Scott D. Stoller. Accurate and efficient runtime

detection of atomicity errors in concurrent programs. In Proceedings

of the ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, pages 137–146, 2006.
[54] Amy Williams, William Thies, and Michael D. Ernst. Static deadlock

detection for java libraries. pages 602–629, 2005.
[55] Min Xu, Rastislav Bodı́k, and Mark D. Hill. A serializability violation

detector for shared-memory server programs. In Proceedings of the

ACM SIGPLAN Conference on Programming Language Design and

Implementation, pages 1–14, 2005.
[56] Shin Yoo and Mark Harman. Regression testing minimization,

selection and prioritization: A survey. Journal of Software Testing,

Verification, and Reliability, 22(2):67–120, 2012.
[57] Tingting Yu, Witawas Srisa-an, and Gregg Rothermel. SimRacer: An

automated framework to support testing for process-level races. In
Proceedings of the International Symposium on Software Testing and

Analysis, pages 167–177, 2013.
[58] Tingting Yu, Witawas Srisa-an, and Gregg Rothermel. Simrt: an

automated framework to support regression testing for data races. In
Proceedings of the International Conference on Software Engineering,
pages 48–59, 2014.

215

